CAPACITOR REFORMING - or : How to avoid the Big Bang!

When a new bit of gear arrives in your workshop - what do you do? After a quick check to see the voltage selection (if any) is set correctly, do you apply power without further ado, just to see what happens?

Most of us - if we are honest - have done this at some time. And most of us have "got away with it". Often enough of the equipment powers up OK, with evident signs of life, and no ill effects.

The problem
The trouble is that most of us have also had the other experience! After switching on - and you are in luck - there is only a nasty smell, maybe with some smoke - and you switch off in a hurry. Examination shows that one or more electrolytic capacitors is warm/hot, and possibly even bulging with evident internal pressure. The capacitor then has to be replaced - but no great harm is done.

If you are lucky - there is a large bang - followed by you switching off in an even greater hurry! Examination this time, shows a horrible, gungy mess inside the equipment, where an electrolytic has passed away, leaving its contents scattered into every inaccessible corner.

How to avoid a gamble
So are we faced with this gamble every time we power up new equipment? Well, no - the alternative is to carefully reform the capacitors before fully applying power. Discussing this with Mike Hazell, G1EDP, revealed a piece of equipment that he made up for this task. This handy bit of gear also tells him whether the capacitor is OK or not - if not, he can replace it before any damage is done.

Reforming the capacitors can take some time, I typically for those that have not seen any power for years - and in some cases, days. Naturally, this require some patience - particularly difficult for those desperate to get that new widget up and running. You only need one experience of the "big bang", to tell you that patience is definitely the best policy.

So what goes wrong with electrolytics?
Electrolytics use a very thin film of oxide on the positive electrode as the "insulator" between the plates. They need a small leakage current to keep this oxide layer in place. If left unpowered for long periods the oxide can break down, making the capacitor into more or less a dead short.

When power is applied to a capacitor in this condition, it may quickly re-oxidise, and limit the current flow. In some cases, lots of current flows, the capacitor get hot, starts to gas, and may also explode.

Exactly what is 'reforming'?
Reforming applies voltage to the capacitor - but in a controlled manner so if it is a short, the current is limited to a safe value. This allows the oxide layer to slowly reform, without producing excessive heat and gas - although this may take several hours to complete.

A simple capacitor reforming unit
When I asked Mike, G1EDP about his capacitor reforming unit, he gave me a photocopy of an article from the May 1969 issue of Radio Constructor magazine (now long defunct - see Acknowledgements).

A memorable 'big bang'
While at school in the Cadet Force Signals section, I was one day repairing a WS19 power supply. After fixing it I took it up to the physics lab for a test.

I put the PSU (not in its case) on the bench and applied 12 volts. Everything seemed OK, so I left it running, and went to chat to the lab technician.

Suddenly there was an almighty bang, and the physics master came rushing out of a lesson to find out what was going on. He was not pleased to find a trail of gunge scattered across the

http://www.vmars.org.uk/capacitor_reforming.htm
bench and floor. A glance at the PSU showed that the electrolytic was now no more than an empty can. Following the trail, I was astonished to find most of the solid contents of the WS19 smoothing capacitor sitting neatly in a waste bin, some 3 yards from the PSU.

Richard, G7RVI

The way this circuit works is as follows. Initially at switch on, the voltage across BE is at zero (since CT is presumably discharged) and the voltage AB is equal to that of the DC supply, and the neon lights. If CT is at all healthy it will slowly (maybe very slowly) start to reform and charge up - the voltage across BE will start to rise, and that across AB - and the neon circuit - correspondingly falls.

As this process continues - and it may take hours - the voltage across AB falls to the point where it is insufficient to keep the neon continuously alight. The neon then goes into a flashing mode due to RN and CN. Once the neon stops flashing, the voltage across AB is then at a low value (approximately 75 volts) and CT is virtually fully charged, and can be assumed to have reformed successfully.

Design of a practical capacitor reformer

The full circuit for a capacitor reformer is shown in Fig.1 which has been adapted from the Radio Constructor article already mentioned.

A simple DC supply using a voltage doubler rectifier arrangement turns a 250V AC output of the transformer into approximately 520 volts DC across C1 and C2. The resistor chain R1 to R10, R16 to R18 sets the voltage to be used in the reforming, and can be selected by the 12 position switch S1b. The resistor values have been chosen to provide the voltages shown in Table 1, and have approximately 25mA flowing through.

When setting up the unit, the value of R16 should be chosen to that point 'M' has 500 volts with respect to the negative rail (chassis or ground).
Acceptable leakage current

All electrolytics leak to some degree - the question is whether the leakage is at a reasonable level or not. What is "reasonable" varies with the quality of the capacitor, and also its voltage rating. The circuit in Fig.2 detects leakage currents typical of older capacitor types - it will not necessarily work well with modern capacitors, particularly some of the very high capacitance values now available that can have leakage specifications up to a few milliamps.

A capacitor with acceptable leakage current is indicated by the neon stopping its flashing and going completely. This occurs when the voltage across AB, in Fig.1, falls to about 75 volts. The values of resistors R_{13}, R_{14} and R_{19} (the equivalent of R_L in Fig.1) chosen by:

$$R (k\Omega) = 75 \text{ volts (i.e. voltage neon goes out at)} \ max \text{ acceptable leakage current (mA)}$$

The values for these resistors shown in the parts list Table 2) give the leakage currents shown in Table 1.

Table 1: Switch S1 settings

<table>
<thead>
<tr>
<th>S1 position</th>
<th>Approximate voltage available</th>
<th>Maximum capacitor leakage current (μA)</th>
</tr>
</thead>
</table>

Table 2: Parts list for the capacitor reformer

<table>
<thead>
<tr>
<th>Component reference</th>
<th>Value and type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 - R_9$</td>
<td>$2.2 , k\Omega, \pm 5%, 2W$</td>
</tr>
</tbody>
</table>
Low voltage electrolytics
A slightly different arrangement is made for low voltage electrolytics, which may be tested on positions 10 and 11 of S1. Position 10 provides about 63 volts, and position 11 a variable voltage in the range 0 - 50 volts. Since the neon indicator will not work at all at these low voltages, provision is made to connect an external voltmeter across R19 - this should be a 20kΩ/V meter (such as an AVO) or better, a DVM.

R19 has a value of 10kΩ so each volt developed across it indicates that 100mA is flowing in leakage current. The acceptable limit value in this case can either be taken from the specifications, or if these are unavailable, use a value of 0.01CV mA, where C = capacitance in μF, and V = applied voltage in volts. Position 12 of S1 is provided for safe capacitor discharge: remember a capacitor charged with up to 500 volts can give a very unpleasant belt!

Professional capacitor reformers
It is worth noting that there are ex-MOD capacitor reforming units around - although I personally have never seen one for sale, nor do I have any information on such units. You may be lucky and pick one up at a rally - well worth getting if you see one.

Acknowledgements
The basic circuit design for the capacitor reformer was taken from an article by T.W. Bennett, "Reforming ar Testing Electrolytic Capacitors", published in the May 1969 issue of Radio Constructor magazine.

Submitted by Mike Hazell, G1EDP

Copyright © April 2000 VMARS and Authors